Do We Need LAAO in the Era of NOAC?

Hee Tae Yu, MD, PhD

Assistant Professor,
Division of Cardiology, Severance Cardiovascular Hospital,
Yonsei University College of Medicine, Seoul, Korea

Korean Heart Rhythm Society COI Disclosure

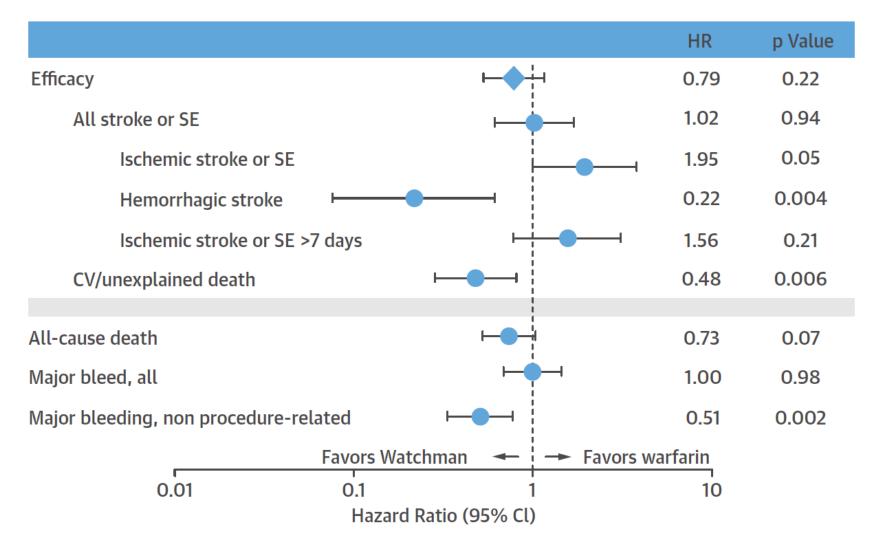
Hee Tae Yu

The authors have no financial conflicts of interest to disclose concerning the presentation

Safety Concerns with LAAO and OAC

Safety concerns with left atrial appendage occlusion

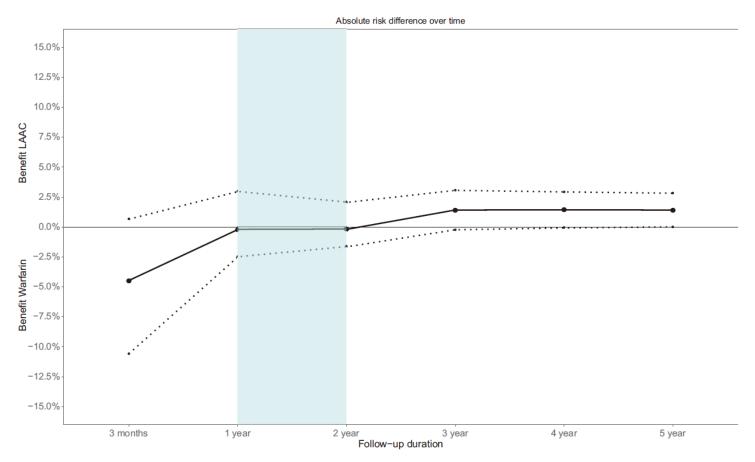
- Risk of infection at the access site
- Risk of device induced thrombus
- Risk of left atrial appendage rupture after device employment.
- Need of continuous oral anticoagulation even after device occlusion


Safety concerns with Oral anticoagulation

- Warfarin requires frequent monitoring of the INR and has a narrow therapeutic window.
- NOAC requires frequent dosing and skipping a dose can put the patient at risk for thrombus formation.
- Both vitamin K and non vitamin K anticoagulants can lead to episodes of major bleeding during long term treatment.

Sandhu O et al. Cureus 2020;12:e10437

Meta-analysis of PREVAIL and PROTECT-AF



Holmes DR et al. J Am Coll Cardiol 2015;65:2614-2623

Meta-analysis of PREVAIL and PROTECT-AF

Net Clinical Benefit of Left Atrial Appendage Closure Versus Warfarin in Patients With Atrial Fibrillation: A Pooled Analysis of the Randomized PROTECT-AF and PREVAIL Studies

Brouwer TF et al. J Am Heart Assoc 2019;8:e013525

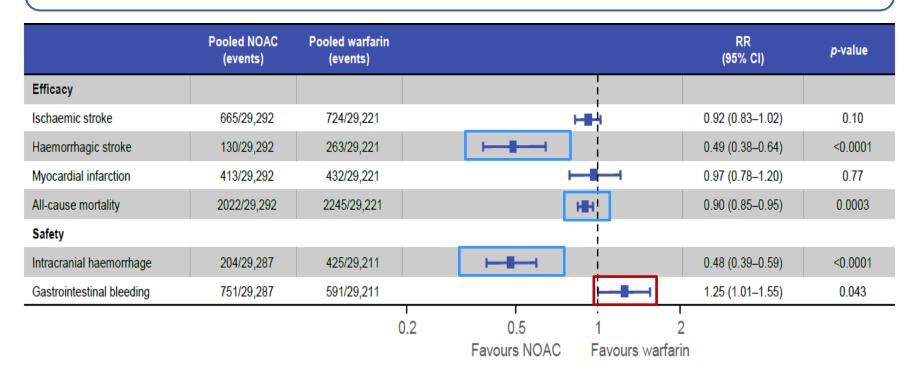
Recent Guideline Recommendations

COR	LOE	Recommendation			
IIb	B-NR	 Percutaneous LAA occlusion may be considered in patients with AF at increased risk of stroke who have contraindications to long-term anticoagulation. NEW: Clinical trial data and FDA approval of the Watchman device necessitated this recommendation. 			

2019 AHA/ACC/HRS AF Guidelines

Recommendations for occlusion or exclusion of the LAA		
LAA occlusion may be considered for stroke prevention in patients with AF and contraindications for long-term anticoagulant treatment (e.g. intracranial bleeding without a reversible cause). 448,449,481,482	ПР	В
Surgical occlusion or exclusion of the LAA may be considered for stroke prevention in patients with AF undergoing cardiac surgery. 459,483	ПР	С

2020 ESC AF Guidelines



NOAC, A Game Changer for SPAF

NOACs are associated with significant reductions in:

- ◆ Haemorrhagic stroke (with a strong trend towards lower rates of ischaemic stroke)
- Intracranial haemorrhage
- ◆ All-cause mortality (with a trend towards lower rates of myocardial infarction)

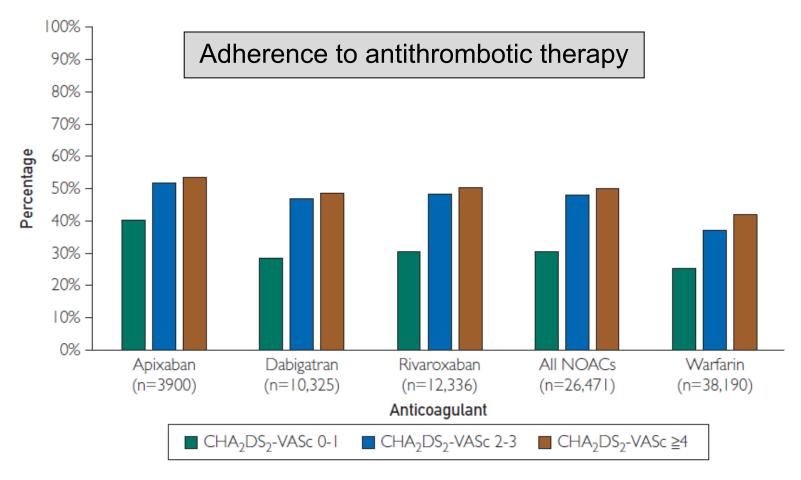
Whereas the risk of gastrointestinal bleeding is increased (not in Asian, only in Western)

Ruff CT et al. Lancet 2014;383:955-962

Problems with oral anticoagulation

- Incomplete efficacy
- Intracranial bleeding
- Life threatening bleeding
- Drug-drug and food-drug interactions
- Poor adherence and persistence with therapy
- Failure to be prescribed
- Use of low dose
- Expensive reversal agents relatively unavailable with NOACs

with VKA

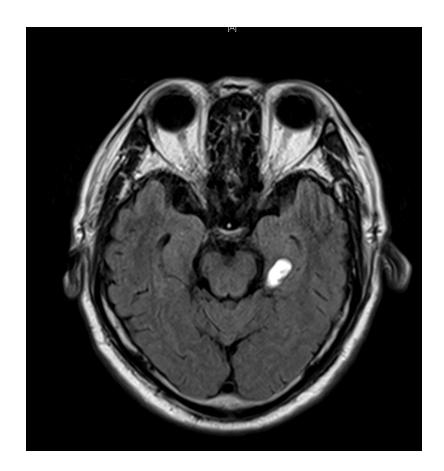

Worse

Worse

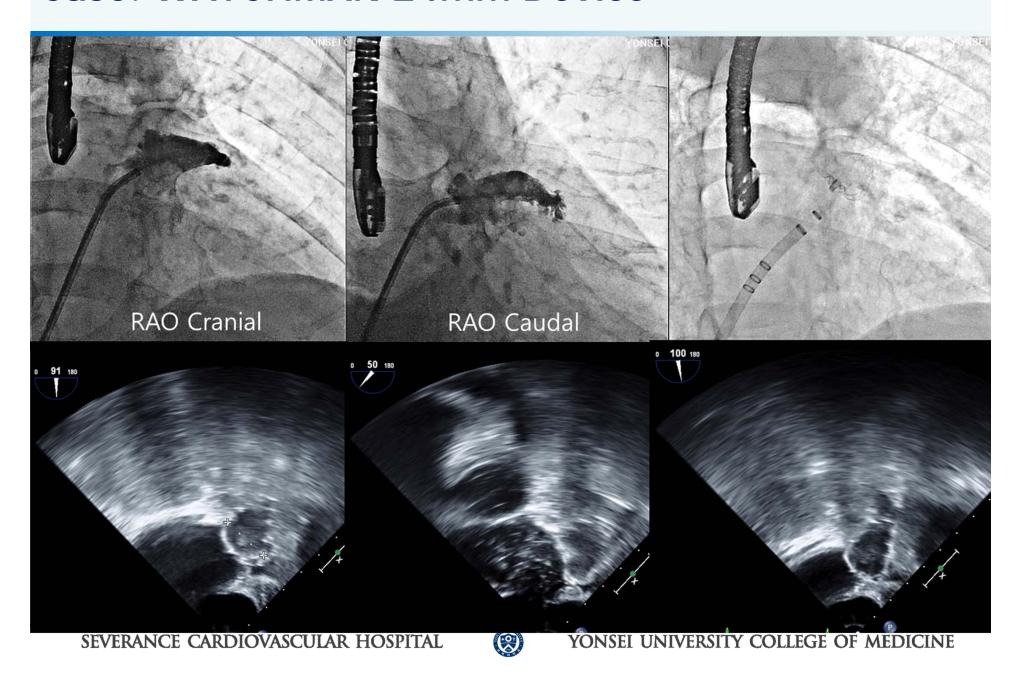
Inadequate use, too many strokes, too many bleeds and too many deaths

Nonadherence to OAC therapy

A retrospective cohort analysis by using a large US commercial insurance database (N=64,661) from Nov 2010 to Dec 2014



Yao X et al. J Am Heart Assoc. 2016;5:e003074



Case: M/72, ICH under NOAC

- Persistent AF, S/P DC cardioversion
- CAD (left main 50% stenosis)
- Hypertension, DM, CKD (eGFR 62)
- CHA₂DS₂-VASc 3
- Subacute ICH d/t Hemangioma
- Under Rivaroxaban 15mg QD

Case: WATCHMAN 24mm Device

Post-ICH Stroke Prevention

Risk factors for ICH

Modifiable

- (Uncontrolled) hypertension
- · Low LDL/triglycerides
- Excessive alcohol consumption
- Current smoking
- Concomitant antiplatelet drugs
- · Anticoagulant therapy
- Sympathomimetic drugs (cocaine, heroin, amphetamine, ephedrine, etc.)

Non-modifiable

- · Older age
- Male sex
- · Asian ethnicity
- Chronic kidney disease
- · Cerebral disease:
- · Cerebral amyloid angiopathy
- Small vessel disease

(Re)institution of OAC: Decision-making post ICH in patients with AF Consider risk factors for recurrent ICH Address modifiable bleeding risk factors Weight the risks and benefits of OAC (re)institution in consultation with neurologist/stroke specialist OAC use (with/without cerebral diseaes): (observational data, RCTs are ongoing) Significant decrease in stroke and mortality • Comparable risk for recurrent ICH vs. OAC non-use OAC Irreversible cause of No stroke ICH, non-modifiable prevention Class IIa. risk factors, etc. LoE C therapy 2-4 weeks LAA after ICH occlusion Class Ilb, LoE B

Additional considerations:

- No reversible/treatable cause of ICH
- ICH during OAC interruption
- ICH on adequate or underdosed OAC
- The need for concomitant antiplatelet therapy (e.g., ACS/PCI)

CMB on cerebral imaging:

- The risk of ICH increases with the presence and increasing CMB burden, but
- Regardless of CMB presence, burden and distribution, the obsolute risk of ischaemic stroke is consistently substantially higher than that of ICH in post-stroke/ TIA patients

≥10 CMBs:

64 IS vs. 27 ICH events/1000 person-years

>20 CMBs:


73 IS vs. 39 ICH events/1000 person-years

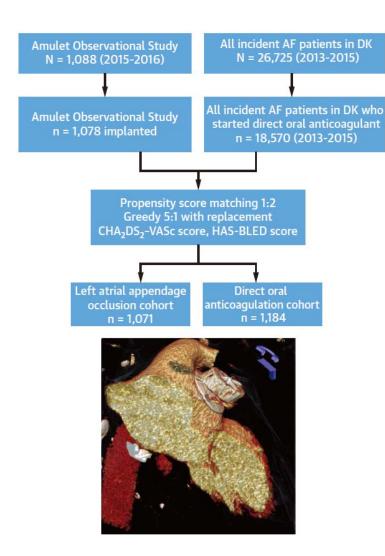
2020 ESC AF Guidelines

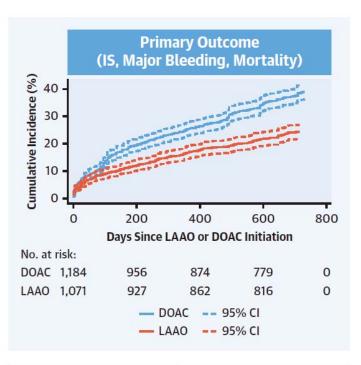
RCTs are ongoing

Network meta-analyses of the NOAC vs. warfarin and LAAO vs. warfarin RCTs

ORs of stroke prevention

NOAC	1.17 (0.85,1.67)	1.16 (0.57,2.97)		
0.86 (0.60,1.18)	Warfarin	0.99 (0.52,2.28)		
0.86 (0.34,1.75)	1.01 (0.44,1.94)	Watchman		


ORs of major bleeding events


NOAC	1.27 (0.84,1.88)	0.66 (0.29,1.45)		
0.79 (0.53,1.19)	Warfarin	0.52 (0.26, 1.06)		
1.52 (0.69,3.42)	1.93 (0.94,3.89)	Watchman		

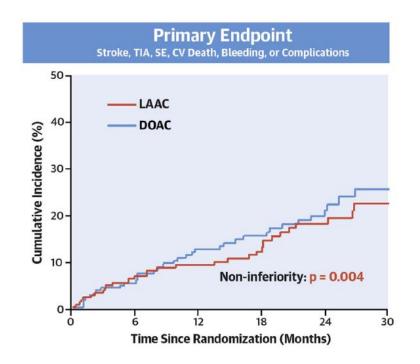
Li X et al. Heart Rhythm 2016;13:1203-1214

LAAO vs. NOAC: A Propensity Score-Matched Study

Clinical Outcomes	Hazard Ratio (95% CI)
IS, major bleeding, mortality	0.57 (0.49-0.67)
Ischemic stroke	1.11 (0.71-1.75)
Major bleeding	0.62 (0.49-0.79)
All-cause mortality	0.53 (0.43-0.64)
Cardiovascular mortality	0.51 (0.37-0.70)

Nielsen-Kudsk JE et al. J Am Coll Cardiol Intv 2021;14:69-78

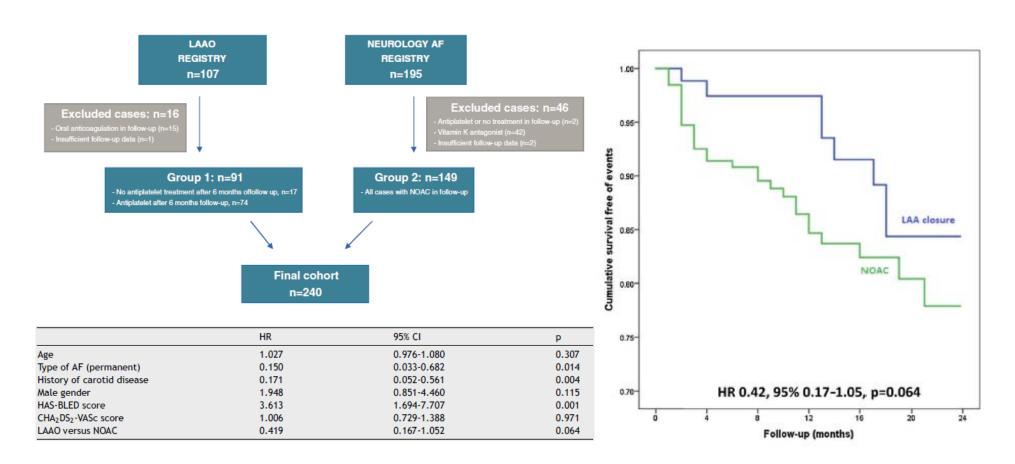
LAAO vs. NOAC RCT in high-risk AF patients : PRAGUE-17 Trial



402 High-Risk AF Pts → Randomized

 CHA_2DS_2 -VASc = 4.7 ± 1.5 HAS-BLED = 3.1 ± 0.9

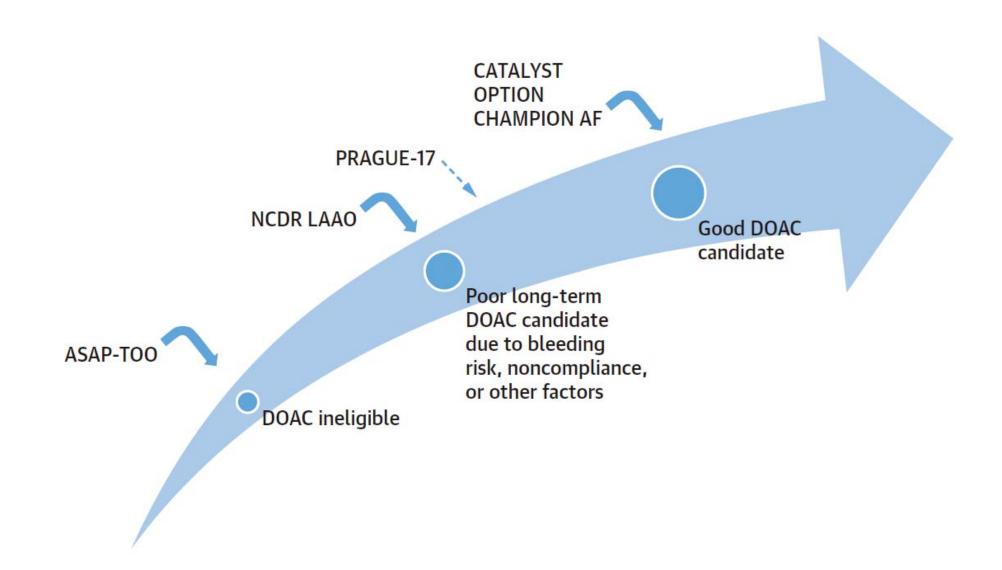
• Follow-up: 20.8 ± 10.8 mo (695 pt-year)



	sHR (95% CI)	p value
Primary Endpoint		
mITT	0.84 (0.53-1.31)	0.44
Per Protocol	0.82 (0.52-1.30)	0.40
On-Treatment	0.79 (0.49-1.25)	0.31
All-Stroke/TIA	1.00 (0.40-2.51)	0.99
CV Death	0.75 (0.34-1.62)	0.46
Major + NMCR Bleeding		
All	0.81 (0.44-1.52)	0.51
Nonprocedural	0.53 (0.26-1.06)	0.07

Osmancik P et al. J Am Coll Cardiol 2020;75:3122-3135

LAAO vs. NOAC from observational study



- ✓ A prospective, single-center, non-randomized cohort study
- ✓ Primary outcome: composite of death, stroke and major bleeding

Paiva L et al. Rev Port Cardiol 2021;40:357-365

Ongoing or Planned RCTs and Registries of LAAO

Ongoing RCT comparing LAAO vs. NOAC : CATALYST Trial (NCT04226547)

<u>C</u>linical trial of <u>a</u>trial fibrillation pa<u>t</u>ients comp<u>a</u>ring <u>l</u>eft atrial appendage occlusion therap<u>y</u> to non-vitamin K antagoni<u>st</u>s

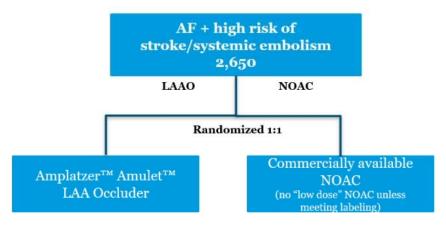
Design:

 Prospective, randomized, multicenter active control worldwide trial.

Primary Endpoints:

- Composite of ischemic stroke, systemic embolism, or CV mortality (non-inferiority)
- Major or clinically relevant non-major bleeding (non-inferiority)
- Major or clinically relevant non-major bleeding, excluding procedure related events (superiority)

Expected enrollment timeline


July 2020 - August 2024

Total length of study

9 years

Steering Committee

- Chair: Vivek Reddy, MD
- Co-Chairs: Stephan Windecker, MD PhD & Elaine Hylek, MD

Follow up 3, 6, 12, 18, 24, 30 months, 3-, 4-, 5- years

Summary of RCTs Comparing LAAO with NOACs

Study Name	N	Key Inclusion Criteria	Intervention Arm	Control Arm	Primary Endpoint	Follow-Up	Sponsor
CATALYST (NCTO4226547)	2,650	Patients with NVAF who are at high risk for stroke CHA ₂ DS ₂ -VASc ≥3, and who are also suitable for DOAC	LAAO with Amulet	DOAC	 Composite of ischemic stroke, SE, or CV death (NI) Major bleeding or clinically relevant non-major bleeding excluding procedural bleeding (S) Composite ischemic stroke/SE (NI) 	3 yrs*	Abbott Medical Devices
CLOSURE-AF (NCT03463317)	1,512	Patients NVAF who are at high risk of stroke (CHA ₂ DS ₂ -VASc ≥2), and at risk of bleeding or have contraindication to OAC	CE-mark/ approved LAAO device	DOAC or VKA	Composite of stroke, SE, BARC type 3-5 bleeding, CV or unexplained death	2 yrs	Charite University Germany
CHAMPION-AF†	3,000	Patients with NVAF who are at high risk of stroke (CHA ₂ DS ₂ -VASc ≥2 for men, ≥3 for women), and are suitable for DOAC	LAAO with Watchman/FLX	DOAC	 Composite of ischemic stroke, SE, or CV death (NI) Nonprocedural bleeding (ISTH major bleeding and clinically relevant non-major bleeding) (S) 	•	Boston Scientific
OCCLUSION-AF (NCT03642509)	750	Patients with NVAF who have neuroimaging-confirmed ischemic stroke or TIA within the past 6 months, and who are also eligible for DOAC	LAAO with Amulet or Watchman	DOAC	Composite of stroke, SE, major bleeding, and all-cause mortality	5 yrs	University of Aarhus Denmark
OPTION (NCT03795298)	1,600	Patients NVAF who are at high risk of stroke (CHA ₂ DS ₂ -VASc ≥2 for men, ≥3 for women), are suitable for DOAC, and who will undergo either concomitant or sequential catheter ablation for AF	LAAO WITH Watchman/FLX	DOAC	 Stroke, all-cause death, and SE (NI) Nonprocedural bleeding (ISTH major bleeding and clinically relevant nonmajor bleeding) (S) 	3 yrs	Boston Scientific

Summary

- OACs are the cornerstone of SPAF. However, they are frequently underused or discontinued because of adverse effects and nonadherence.
- LAAO has emerged as a feasible alternative to OAC in patients who are not ideal candidates for long-term anticoagulation.
- Ongoing RCTs comparing LAAO and NOACs are being conducted involving AF patients and relative or absolute contraindication for long-term OAC.
- LAAO can be utilized as second line therapy in patients with high risk of bleeding or recurrent stroke under standard anticoagulation.

Thank you for your attention!

Severance EP FACULTY

- Moon-Hyoung Lee, MD, PhD
- Hui-Nam Pak, MD, PhD
- Boyoung Joung, MD, PhD
- Tae-Hoon Kim, MD
- Hee Tae Yu, MD, PhD
- Yoon Jung Park, MD

Severance EP FELLOW

- Jae-Hyuk Lee, MD
- Gain Yu, MD
- Daehoon Kim, MD
- Moon-Hyun Kim, MD

Gangnam Severance EP

- Jong-Youn Kim, MD, PhD
- In-Soo Kim, MD

Yongin Severance EP

- Jae-Sun Uhm, MD, PhD
- Je-Wook Park, MD